## GCSE

## Maths

## Higher Only Content Weeks 9-12

## Online Tuition Workbook

Week 5 - The Sine/Cosine Rule
Week 6 - Surds
Week 7 - Direct and Inverse Proportion
Week 8 - Inverse and Composite Functions
Week 9 - Quadratic Sequences / Completing the Square / Factorising Quadratics
Week 10 - Circle Theorems
Week 11 - Vector Proofs
Week 12 - Parallel/Perpendicular Lines and Equations of Tangents
Week 13 - Non-Linear Simultaneous Equations
Week 14 - Probability Equation Questions
Week 15 - Paper 1 Walkthrough
Week 16 - Paper 2/3 Walkthrough
Week 17 - Paper 2/3 Walkthrough
Week 18 - Paper 3 Walkthrough

## Week 9

## Quadratic Sequences Completing the Square Factorising Quadratics

- Recognise quadratic sequences
- Find the general term of quadratic sequences
- Rewrite quadratic expressions by completing the square
- Identify turning points
- Factorise quadratics where the coefficient of $x^{2}$ is $\neq 1$
- Solve and sketch quadratic inequalities

Work out the formula for the $n^{\text {th }}$ term of the following quadratic sequence

$$
2, \quad 10, \quad 20, \quad 32
$$

Work out the formula for the $n^{\text {th }}$ term of the following quadratic sequence

$$
0, \quad 7, \quad 18, \quad 33
$$

Work out the formula for the $n^{\text {th }}$ term of the quadratic sequence and hence find the term that has value 424

$$
6, \quad 10, \quad 16, \quad 24
$$

Write $x^{2}-6 x$ in the form $(x+a)^{2}+b$ and thus write down the coordinate of the turning point of $y=x^{2}-6 x$

Write $x^{2}-3 x+1$ in the form $(x+a)^{2}+b$ and thus write down the coordinate of the turning point of $y=x^{2}-3 x+1$

Write $2 x^{2}-20 x+3$ in the form $(x+a)^{2}+b$ and thus write down the coordinate of the turning point of $y=2 x^{2}-20 x+3$

Write $x^{2}-8 x$ in the form $(x+a)^{2}+b$ and thus write down the coordinate of the turning point of $y=x^{2}-8 x$

Write $x^{2}-7 x+2$ in the form $(x+a)^{2}+b$ and thus write down the coordinate of the turning point of $y=x^{2}-7 x+2$

Write $3 x^{2}-48 x+1$ in the form $(x+a)^{2}+b$ and thus write down the coordinate of the turning point of $y=3 x^{2}-48 x+1$

By completing the square, solve $x^{2}+5 x-2=0$ (giving your answer in surd form)

By completing the square, solve $2 x^{2}+8 x-1=0$ (giving your answer in surd form)

1. Solve by factorising $2 x^{2}-8 x=0$
2. Solve by factorising $4 x^{2}-25=0$
3. Solve by factorising $2 x^{2}-98=0$
4. Solve by factorising $2 x^{2}-3 x-9=0$
5. Solve by factorising $3 x^{2}-x-10=0$
6. Solve by factorising $36 x^{2}-25=0$
7. Solve by factorising $10 x^{2}-90=0$
8. Solve by factorising $4 x^{2}-12 x+5>0$
9. Solve by factorising $2 x^{2}+13 x+15<0$

Simplify fully $\frac{6 x-2}{x^{2}+6 x+5} \div \frac{3 x^{2}+11 x-4}{2 x^{2}+13 x+15}$

Solve $\frac{12}{x+2}-\frac{2}{x+1}=3$

Simplify fully $\frac{2 x^{2}+7 x+6}{x^{2}-4} \times \frac{x^{2}+7 x-18}{2 x^{2}-x-6}$

Solve $\frac{7}{x+1}+\frac{4}{2 x-9}=1$

# Week 10 Circle Theorems 

- Solve multi-step problems using circle theorems
- Prove circle theorems
$E, F, G$ and $H$ are points on the circumference of the circle Work out the size of angle $E H G$ and the value of $x$

$Q, T, R$ and $S$ are points on the circumference of the circle Work out the size of angle $S Q R$ and angle QST

$A, C$ and $B$ are points on the circumference of the circle $A O C$ is a diameter of the circle
Work out the size of angle $A C B$

$Z, X$ and $Y$ are points on the circumference of the circle, centre $O$ Work out the size of angle $X Z Y$

$Z, X$ and $Y$ are points on the circumference of the circle, centre $O$ Work out the size of angle $X O Y$

$M$ and $P$ are points on the circumference of the circle, centre $O$ Work out the size of angle NOM

$M$ and $P$ are points on the circumference of a circle, centre $O$ $M N$ and $P N$ are tangents to the circle Angle $M N P=40^{\circ}$
Find the size of angle $O P M$

$Z, W$ and $Y$ are points on the circumference of a circle, centre $O$ $W X$ and $Y X$ are tangents to the circle Angle $W X O=21^{\circ}$
Find the size of angle $W Z Y$

$G$ and $F$ are points on the circumference of a circle, centre $O$ $F H$ is a tangent to the circle Angle FGH $=25^{\circ}$
Find the size of angle $G H F$

$B, D$ and $F$ are points on the circumference of a circle, centre $O$ $A B C$ is a tangent to the circle Angle $C B D=49^{\circ}$
i) Find the size of angle $B F D$
ii) Find the size of angle $O B D$

$F, G, H$ and $E$ are points on the circumference of the circle, centre $O$ Angle $F E H=112^{\circ}$
Find the size of angle $x$

$A, B$ and $C$ are points on the circumference of a circle, centre $O$ Angle $B C A$ and angle $B A C$ are in the ratio $4: 5$ Find the size of angle $B C A$ and angle $B A C$

$F, D$, and $B$ are points on the circumference of the circle, centre $O$ $A B C$ is tangent to the circle Angle $F D O=32^{\circ}$
Angle $D B C=49^{\circ}$
Find the size of angle FBO

$Z, X$, and $Y$ are points on the circumference of the circle, centre $O$ Angle $X Y O=44^{\circ}$
Find the size of angle $X Z Y$

$W, Y$ and $Z$ are points on the circumference of a circle, centre $O$ $O Y X$ is a straight line and $W X$ is a tangent to the circle Given that angle $O X W=30^{\circ}$ find the size of angle $W Z Y$

$W, Z$ and $Y$ are points on the circumference of the circle, centre $O$ $O W$ and $O Y$ are both radii of length 10 cm
$W X$ and $Y X$ are both tangents to the circle
Given that $O X=20 \mathrm{~cm}$, find the arc length $W Z Y$

$G$ and $F$ are points on the circumference of the circle, centre $O$ $F H$ is tangent to the circle
GOF is a straight line
Angle $F G O=y^{o}$
Find the size of angle GHF in terms of $y$

$F, E, D$, and $B$ are points on the circumference of the circle, centre $O$ $A B C$ is tangent to the circle Show that $x-y=90$

$X, Y$ and $Z$ are points on the circumference of a circle, centre $O$ Prove that angle $X O Y$ is twice that of angle $X Z Y$ Do not use any circle theorems in your proof

$A, B$ and $C$ are points on the circumference of a circle, centre $O$ $C O A$ is a diameter of the circle
Prove that angle $A B C$ is $90^{\circ}$
Do not use any circle theorems in your proof

$T, R, S$ and $Q$ are points on the circumference of a circle, centre $O$ Prove that angle $S Q R$ and angle $R T S$ are equal

$E, F, G$ and $H$ are points on the circumference of a circle, centre $O$ Prove that angle GFE and angle GHE sum to $180^{\circ}$

$B, D$ and $F$ are points on the circumference of a circle, centre $O$ $A B C$ is a tangent to the circle Prove that angle $C B D$ and angle $B F D$ are equal



# Week 11 Vector Proofs 

- Show that vectors are parallel
- Show that vectors are collinear


## $\overrightarrow{O A}=\boldsymbol{a}$ <br> $\overrightarrow{O B}=\boldsymbol{b}$

$P$ is the point on $B A$, where $B P: P A=1: 2$
Show that $\overrightarrow{O P}$ can be written in the form $k(\boldsymbol{a}+2 \boldsymbol{b})$ where the value of $k$ is to be found

$\overrightarrow{O A}=2 \boldsymbol{a}$
$\overrightarrow{O B}=3 \boldsymbol{b}$
$P$ is the point on $B A$, where $B P: P A=3: 4$ Show that $\overrightarrow{O P}$ can be written in the form $k(\boldsymbol{a}+2 \boldsymbol{b})$ where the value of $k$ is to be found

$A B C D$ is a trapezium
$\overrightarrow{D A}=3 a$
$\overrightarrow{A B}=\mathbf{3 b}$
$\overrightarrow{D C}=2 \overrightarrow{A B}$
$M$ is the midpoint of $D B$
Show that $A M$ is parallel to $B C$

$A B C D E F$ is a regular hexagon with centre $O$
$\overrightarrow{O A}=\boldsymbol{a}$
$\overrightarrow{O B}=\boldsymbol{b}$
$M$ is the midpoint of $C D$
$E D$ has been extended to the point $G$ where $E D: D G=3: 2$
Prove that $\mathrm{A}, \mathrm{M}$ and $G$ are on the same straight line

$O A B C$ is a parallelogram
$\overrightarrow{O A}=\boldsymbol{a}$
$\overrightarrow{O B}=\boldsymbol{b}$
$P$ is the point on $O C$ where $O P: P C=2: 1$
$M$ is the midpoint of $B C$
Prove that $\mathrm{A}, \mathrm{P}$ and $M$ are on the same straight line

$O A B C$ is a parallelogram
$\overrightarrow{O A}=3 \boldsymbol{a}$
$\overrightarrow{O B}=4 \boldsymbol{b}$
$M$ is the midpoint of $A B$
$O B D$ is a straight line where $O B: B D=2: 5$
Given that $\overrightarrow{M D}=k \boldsymbol{b}-\frac{3}{2} \boldsymbol{a}$ find the value of $k$


## $\overrightarrow{O A}=2 \boldsymbol{a}$ <br> $\overrightarrow{O B}=2 \boldsymbol{b}$

$C$ is the midpoint of $O A$
$\overrightarrow{O B}=\frac{2}{5} \overrightarrow{O G}$
$F$ is a point on $B A$
$\overrightarrow{B F}=k \overrightarrow{B A}$
$C F G$ is a straight line
Find the value of $k$

$\overrightarrow{O A}=\boldsymbol{a}$
$\overrightarrow{O B}=\boldsymbol{b}$
$C$ is the midpoint of $A B$
$O E: E C=4: 3$
Work out the ratio of $O D: D B$

$A B C D$ is a quadrilateral
$\overrightarrow{\overrightarrow{A B}}=\boldsymbol{a}$
$\overrightarrow{B C}=\boldsymbol{b}$
$\overrightarrow{D A}=\boldsymbol{a}-\boldsymbol{b}$
$E$ is the midpoint of $B C$ $F$ lies on the point $D E$
$D F: F E=n: 1$
$A F C$ is a straight line Find the value of $n$

$O A B C$ is a parallelogram
$\overrightarrow{O C}=\boldsymbol{c}$
$\overrightarrow{O B}=\boldsymbol{b}$
$D$ is the point on $O C$ where $O D: D C=1: 3$
$E$ is the point on $O B$ where $O E: E B=1: 2$
Work out, in its simplest form, the ratio $A D: A E$


## Week 12

Title Page

## Parallel/Perpendicular Lines Equations of Tangents

- Apply properties of parallel and perpendicular lines to find unknown straight-line equations
- Find the equation of a tangent line

Find the equation of the straight line passing through $(2,-3)$ parallel to $4 x+2 y=8$ giving your answer in the form $a y+b x+c=0$

Line $A$ passes through $(0,3)$ and $(-2,8)$
Line $B$ is perpendicular to line $A$ and passes through ( $5,-5$ ) Find the equation of line $B$ giving your answer in the form $a y+b x+c=0$

Line $A$ has equation $3 x-5 y-20=0$
i. Find the gradient of the line
ii. Line $A$ intersects the $x$-axis at $F$ and the $y$-axis at $G$ find the midpoint of $F G$

Line $A$ passes through $(2,8)$ and $(4,5)$
Line $B$ is the perpendicular bisector of Line $A$
Find the equation of Line $B$ in the form $a x+b y=c$

A line of gradient -4 passes through the points $(-4,7)$ and $(a, 5)$ Find the value of $a$

A line passes through $(1,5)$ and $(5,7)$
Another line passes through $(-1,7)$ and $(2, a)$
Find the value of $a$ if:
i. The lines are parallel
ii. The lines are perpendicular

A triangle $A B C$ has points $A(3,11), B(-9,7)$ and $C(-7,1)$
Prove that the angle $A B C$ is a right angle

A circle has centre $(3,6)$
The point $A(11,9)$ lies on the circumference of the circle Find the equation of the tangent to the circle at $A$

A circle has equation $x^{2}+y^{2}=17$
Point $P(1,4)$ lies on the circle
Find the equation of the tangent to the circle at point $P$

Line $A$ is tangent to the circle $x^{2}+y^{2}=13$ at point $P(2,3)$
Line $A$ crosses the $y$-axis at point $F$
Find the area of triangle $O P F$

Line $A$ has equation $2 y+4 x=6$
Line $B$ passes through $(5,6)$ and is perpendicular to Line $A$ Line $B$ crosses the $x$-axis at $F$ and the $y$-axis at $G$ Given that $O$ is the origin, find the area of triangle $O F G$

Line $A$ has equation $2 x+3 y=26$
Line $B$ passes through the origin $O$ and is perpendicular to Line $A$ Line $A$ intersects the $x$-axis at $F$
Line $A$ and Line $B$ intersect at $C$
Find the area of triangle $O F C$

